Friday 26 April 2024

Sang-Heronian Triangles and some History about Near Equilateral Triangles

  

The first Near Equilateral triangles with consecutive integer sides and integer area (sometimes called Brahamagupta triangles) was discovered over 2500 years ago. The discovery of the 3,4,5 right triangle seems lost in antiquity back before 500 BC. All Pythagorean triangles are Heronian, but lots (infinitely many) of other triangles that are not right triangles also are Heronian.  The second near equilateral triangle, the 13, 14, 15; was known to Heron of Alexandra as early as 70 AD, almost 2000 years ago. Since then, they've grown in number, and to infinity, and been dissected and diagnosed repeatedly. They've even been generalized to three dimensions in Heronian Tetrahedra. Here is one part of their story.

Heron of Alexandria is known to have developed a method of finding the area of triangles using only the lengths of the three sides. It is known that it was proven in his Metrica around 60 AD. His proof was extended in the 7th century by Brahamagupta extended this property to the sides of inscribable quadrilaterals. Since around 1880, the triangular method of Heron has been known as Heron's formula, or Hero's Formula. It emerged in French, formula d'Heron (1883?) and German, Heronisch formel (1875?) and in George Chrystal's Algebra in 1886 in England. 


L E Dickson's History of Number Theory states that Heron stated the 13, 14, 15 triangle and gave its area as 84, the height of 12 being the common side of a 5,12,13 triangle and a 9, 12, 15.  The 5 and 9 combining to form the base of length 14. Brahmagupta is cited in the same work for giving an oblique triangle composed of two right triangles with a common leg a, stating that the three sides are \( \frac{1}{2}(\frac{a^2}{b}+ b)\) , \( \frac{1}{2}(\frac{a^2}{c}+ c)\), and \( \frac{1}{2}(\frac{a^2}{b}- b) + ( \frac{1}{2}(\frac{a^2}{c}- c)\)

In 1621 Bachet took two Pythagorean right triangles with a common leg, 12, 35, 37 and 12, 16, 20 and produced a triangle with sides of 37, 20, 51. With an area of 306 if I did my numbers right.
Vieta and Frans van Schooten, both used the same approach of clasping two right triangles with a common leg; and by the first half of the 18th century, the Japanese scholar, Matsunago, realized that any two right triangles would work, by simply multiplying the sides of each by the hypotenuse of the other, he could juxtapose the two resulting triangles.

In the early 1800's through 1825 the problem was alive and hopping on the Ladies Diary and the Gentleman's Math Companion. One method created right triangles in another triangle to be reassembled into a rational triangle, similar in fact, to the problem that would appear in the 1916 American Mathematical Monthly. (Note; any triangle with rational sides and area can be scaled to become a Heronian triangle.)

In a letter of Oct 21, 1847; Gauss to H. C. Schumacher, he stated a method using circumscribed circles, and found lots of others chose the exact same solutions in their response. E. W. Grebe tabulated a set of 46 rational triangles in 1856. W. A. Whitworth noticed that the 13, 14, 15 triangle of antiquity, that had an altitude of 12, was the only one in which the altitude and sides were all consecutive. (1880)

Somehow, among all those, the contributions of a Professor from Scotland was not observed by Dickson.

The first modern western article I can find on the topic of Near Equilateral triangles with integer sides and area is from Edward Sang which appeared in 1864 in the Transactions of the Royal Society of Edinburgh, Volume 23. I find it interesting that this is only a small aside in a much larger article and that he begins with an approach to examining the angles. Then he arrives at the use of a Pell type equation for approximating the square root of three, \(a^2 = 3x^2 + 1 \) and shows that every other convergent in the chain of approximations is a base of a Near Equilateral Triangle, using sides of consecutive integers. The alternate convergents we seek are given by 2/1, 7/4, 26/15, 97/56... each approaching the square root of three more closely, but also each with a numerator that is 1/2 the base of triangle with consecutive integers for sides and integer area. Perhaps it is easier to just use the recurent relation, \(n_i=4n_{i-1} - n_{i-2}\) with \(n_0=2\), and \(n_1=4\) for the actual middle side,2, 4, 14, 52, 194.... The first few such triangles have their even integer base as2x1=2; (1, 2, 3) area 0; 2x2=4; (3, 4, 5); area 12; 2x7=14;  (13, 14, 15); area 84; 2x26=52; (51, 52, 53); area 1170... etc. Throughout, he refers to "trigons" rather than triangles, and never invokes the name of Heron throughout.  



The next paper using consecutive integer sides was in 1880 by a German mathematician named Reinhold Hoppe, who produced a closed form expression for these almost equilateral Heronian Triangles that was similar to, \( b_n =(2+2\sqrt{3})^n + (2-2\sqrt{3})^n \). His paper calls them "rationales dreieck" (rational triangles) I have not seen the entire paper, and don't know if the term Heronian appeared, or not.

The first American introduction to the phrase "Heronian Triangles", seemed to be an article in the American Mathematical Monthly which posed the introduction as a problem, to divide the triangle whose sides are 52, 56, and 60 into three Heronian Triangles by lines drawn from the vertices to a point within. The problem was posed by Norman Anning, Chillwack, B.C. It then includes a description that suggests it is introducing a new term, "The word Heronian is used in the sense of the German Heronische (with a German citation) to describe a triangle whose sides and area are integral. 

 The only other mentions of a Heronian triangle in English in a google search before the midpoint of the 20th century revealed a 1930 article from the Texas Mathematics Teacher's Bulletin. It credits a 1929 talk, it seems, by Dr. Wm. Fitch Cheney Jr. who, "discusses triangles with rational area K and integral sides a, b, c, the g.c.f of the sides 1, under the name Heronian triangles." (Dr Cheney published an article in the American Mathematical Monthly in 1929, The American Mathematical Monthly, Vol. 36, No. 1 (Jan., 1929), pp. 22-28)  Since any such rational area can be scaled up to an appropriate integer area with integer sides these address the general Heronian Triangle, but still no Near Equilateral, or at least not revealed in the snippet view.  

By the 1980's an article in the Fibonacci Quarterly found a way to produce a Fibonacci like sequence, a second order recursive relation to produce the even bases. Letting \(B_0 = 2, and B_1 = 4\), the recursion was \( U_{n+2} = 4 U{n+1} + U_n\) . This paper by W. H. Gould of West Virginia University addresses the full scope of consecutive sided integer triangles and mentions Hoppe, but not Professor Sang.  Gould's paper seems to be his solution to a problem he had posed earlier in the Fibonacci Quarterly, "of finding all triangles having integral area and consecutive integral sides."  (H. W. Gould, Problem H-37, Fibonacci Quarterly, Vol. 2 (1964), p. 124. .) 
Gould also mentions two other, seemingly earlier posed problems in other journals which I have yet to explore, and given the opportunity, will do so and return to this spot,  If you are impatient, they are

7. T. R. Running, Problem 4047, Amer. Math. Monthly, Vol. 49 (1942), p. 479; Solutions by W. B. Clarke and E. P. Starke, ibid. , Vol. 51 (1944), pp. 102-104.

8. W. B. Clarke, Problem 65, National Math. Mag. , Vol. 9 (1934), p. 63

Gould's article is a wonderful read for the geometry of the incircles and Euler lines in such special triangles is well explored.


These are each candidates to be the first American proposal of these consecutive integer sided triangles, but it seems Gould's paper was the first to expand the full scope of the solutions in any detail.


Some of the characteristics of these I think would be found interesting to HS and MS age students I will spell out below.  

As mentioned above, the length of the middle (even) side follows a 2nd order recursive relation \(B_n = 4B_{n-1}-B_{n-2}\)  so the sequence of these even sides runs 2, 4, 14, 52, 194, 724..... etc. ) is there to represent the degenerate triangle 1,2,3.

Interestingly, the heights follow this same recursive method giving heights of 0, 3, 12, 45, 168....

The height divides the even side into two legs of Pythagorean triangles that make up the whole of the consecutive integer triangle.  They are always divide so that one is four greater than the other, or each is b/2 =+/- 2.

Of the two triangles formed by on each side of the altitude, one is a primitive Pythagorean triangle, PPT, and the other is not.  The one that is a PPT switches from side to side on each new triangle, alternately with the shorter leg, and then the longer leg.  Here are the triangles with the two subdivisions of them with an asterisk Marking the PPT:


Short    Base         Long                      small triangle                 large triangle
  3          4               5                                               *3   4   5
13        14             15                            *5, 12, 13                        9, 12, 15
51        52              53                            24, 45, 51                      * 28, 45, 53
193     194           195                          *95, 168, 193                     99, 168, 195
723     724           725                            360, 627, 723                *364, 627, 725

The pattern of the ending digits of 3, 4, 5 repeated twice, and 1,2,3 once  by looking at the end number behavior of if the previous two numbers end in 4's or a four followed by a two.

In the 1929 article mentioned above, Dr. Cheney writes that he knows of no examples of Heronian triangles up to that time that were not made up of two right triangles, and then gives an example of one that is not decomposable,  25, 34, 39.   He also points out that the altitudes of Heronian triangles are not always integers, and gives the example of 39,58,95 as an example which I calculate to be 4.8.

A paper by Herb Bailey and William Gosnell in Mathematics Magazine, October 2012 demonstrates Heronian triangles in other arithmetic progressions from the near-equilateral ones.

I mentioned that there are also Heronian Tetrahedra, although that use of Heronian seems even later than for triangles, perhaps as late as 2006.   The earliest example of an exact rational tetrahedra with all integer edges, surfaces and volume was by Euler.  He created a tetrahedron formed by three right triangles  parallel to the xyz coordinate axes, and one oblique face connecting them.  The triple right angle edges were 153, 104, and 672, and the three edges of the oblique face were 185, 680, and 697.  These were each Pythagorean right triangles, the four faces of  (104,672,680), (153,680,697), (153,104,185) and (185,672,697)  

There are an infinite number of these Eulerian Birectangular tetrahedra, but they seem to get very large very quickly.  Euler showed that they can be found by deriving the three axis-parallel sides a, b, and c by using four numbers that are the equal sums of two fourth powers.  Euler found an example using , and that's the easy part.  Then he constructed the three monster lengths of 386678175332273368, and 379083360, Yes, those numbers are each in the hundreds of millions, and each pair had a larger hypotenuse to form a third side. 
And as the near end of the Wikipedia discussion of these states, "A complete classification of all Heronian tetrahedra remains unknown."   

On This Day in Math - April 26

  


Mathematics is like childhood diseases. The younger you get it, the better.
~Arnold Sommerfeld

The 116th day of the year; 116! + 1 is prime! *Prime Curios (Students might investigate how often n!+1 is prime)
And:
116^2 + 1 is prime

The number 1 appears 116 times in the first 1000 digits of pi. Thanks to *Math Year-Round ‏@MathYearRound

Impress your History teacher, the 100 Years war between France and England..... lasted 116 years.

and Jiroemon Kimura died in 2013 in Japan. He was 116 years old.  Two years later his record was broken by an even older Japanese citizen who died.

And for a bit of Americana, from a British web site called *isthatabignumber.com..  It's about Hyperion, a tree that is 116 meters tall.




EVENTS

1514 Nicolaus Copernicus (1473-1543) made his first observation of Saturn. Copernicus later proposed that the sun is stationary and that the Earth and the planets move in circular orbits around it. *astronomy.wikia.com Saturn_Project

1760 Euler was asked to tutor the niece of Frederick the Great, the Princess of Anhalt-Dessau. Euler wrote over 200 letters to her in the early 1760s. On this date he sent the third of these letters. The letter covered the physics of sound and he gave a speed of one thousand feet per second. He closes by telling the Princess that we are incapable of hearing a string vibrating at less than 30 vibrations per second, or one that is more than 7552 vibrations per second.  Euler started the first letter with an explanation of the concept of "size". Starting with the definition of a foot, he defined the mile and the diameter of the earth as a unit in terms of foot and then calculated the distance of the planets of the Solar System in terms of the diameter of the earth.



1766 D’Alembert after writing to Frederick II in praise of Lagrange writes to Lagrange about an offer to move to Berlin:
My dear and illustrious friend, the king of Prussia has charged me to write you that, if you would like to come to Berlin to occupy a place in the Academy, he would give you a pension of 1,500 crowns, which are 6,000 French pounds … Mr Euler, unhappy for reasons of which I do not know the details, but in which I see that everyone thinks him wrong, requests permission to leave and wants to go to St. Petersburg. The king, who was not too anxious to grant it, would definitely give it to him if you accept the proposition that he has made
Frederick II of Prussia had more than once invited both d’Alembert and Lagrange to move to Berlin. The encyclopaedist had declined the offer and suggested the name of his Turinese friend. But Lagrange, even though he was on good terms with Euler, did not relish a "cohabitation" with him in the Berlin Academy. *Mauro ALLEGRANZA, Stack Exchange
D'Alembert



1826 The first class of 10 students graduated from Renssalaer Polytechnic Institute on 26 Apr 1826. The Renssalaer School was founded in 1824 in Troy, N.Y., by Stephen van Renssalaer becoming the first engineering college in the U.S. It opened on 3 Jan 1825, with the purpose of instructing persons, who may choose to apply themselves, in the application of science to the common purposes of life." The first director and senior professor was Amos Eaton who served from Nov 1824 - 10 May 1842. The name of Renssalaer Institute was adopted on 26 Apr 1832, and Renssalaer Polytechnic Institute on 8 Apr 1861. *TIS



1861 Richard Owen gives the longest ever discourse at a Royal Institution lecture, ‘On the Scope and Appliances of a National Museum of Natural History’.
Discourse speakers were supposed to aim to speak for exactly one hour but Owen kept talking for two. (It may be coincidence but this is the last discourse he gave.) *Royal Institution web page


1882, the photophone was demonstrated by Alexander Graham Bell and Charles Sumner Tainter. In their device, a mirrored silver disc was made to vibrate by speech from a speaking tube. Light reflected off the disc was focused by a parabolic dish onto a selenium photocell. The variations in the reflected light were converted into electrical signals carried to headphones.
 It was invented jointly by Alexander Graham Bell and his assistant Charles Sumner Tainter on February 19, 1880, at Bell's laboratory at 1325 L Street in Washington, D.C. Both were later to become full associates in the Volta Laboratory Association, created and financed by Bell.
While honeymooning in Europe with his bride Mabel Hubbard, Bell likely read of the newly discovered property of selenium having a variable resistance when acted upon by light, in a paper by Robert Sabine as published in Nature on 25 April 1878. In his experiments, Sabine used a meter to see the effects of light acting on selenium connected in a circuit to a battery. However Bell reasoned that by adding a telephone receiver to the same circuit he would be able to hear what Sabine could only see.

A photophone receiver and headset, one half of Bell and Tainter's optical telecommunication system of 1880




1892 Hermite to Stieltjes: “You state this result and then try to mortify me by saying that it is easy to prove. Since I can’t succeed in doing it I appeal to your good nature to help me out of this difficulty.” [Two Year Journal, 11, 49] *VFR (Boy, haven't we all been there?)
Charles Hermite



1920 Shapley and Curtis debate the nature of the nebulae. In astronomy, the Great Debate, also called the Shapley–Curtis Debate, was an influential debate between the astronomers Harlow Shapley and Heber Curtis which concerned the nature of spiral nebulae and the size of the universe.  
Shapley was arguing in favor of the Milky Way as the entirety of the universe. He believed that "spiral nebulae" such as Andromeda were simply part of the Milky Way. He could back up this claim by citing relative sizes—if Andromeda were not part of the Milky Way, then its distance must have been on the order of 108 light years—a span most contemporary astronomers would not accept.
Curtis, on the other hand, contended that Andromeda and other such as "nebulae" were separate galaxies, or "island universes" (a term invented by the 18th-century philosopher Immanuel Kant, who also believed that the "spiral nebulae" were extragalactic). He showed that there were more novae in Andromeda than in the Milky Way. From this, he could ask why there were more novae in one small section of the galaxy than the other sections of the galaxy, if Andromeda were not a separate galaxy but simply a nebula within Earth's galaxy. 
Later in the 1920s, Edwin Hubble showed that Andromeda was far outside the Milky Way by measuring Cepheid variable stars, proving that Curtis was correct. It is now known that the Milky Way is only one of as many as an estimated 200 billion (2×1011)[6] to 2 trillion (2×1012) or more galaxies in the observable universe.  more here.

Shapley

Curtis




1921 the first U.S. broadcast of the weather was made from St. Louis, Missouri, over station WEW for the federal government. *TIS
Radio Station WEW, the original radio station of Saint Louis University, played an important role in the history of early radio. In 1921 it became only the second radio station in the U.S. and the first station west of the Mississippi River. In 1939 it became the first station to broadcast Sacred Heart Radio, a Catholic religious program which eventually grew to include over a thousand stations around the world. Finally, in 1947 WEW became the first FM radio station in St. Louis.




1962 The UK became the world's third spacefaring country, after the US and the USSR, with the launch of the satellite Ariel 1. It was built by Nasa in collaboration with British scientists to study the properties of the upper atmosphere and cosmic rays, and formed the first of six missions. "The big legacy is that, despite the fact we are a relatively small country, we are a major international player in space research," said Martin Barstow, an astrophysicist and head of the college of science and engineering at the University of Leicester. *The Guardian

*NASA


1968 Time magazine (p. 41) reports a “Trial by Mathematics” in which a couple was convicted on the basis of mathematical probability. Later the reasoning was found to be incorrect. The discussion there is of interest. See also Journal of Recreational Mathematics, 1(1968), p. 183. *VFR See details here.


1985 A 22-cent commemorative stamp for Public Education in America issued in Boston.




1986 Nuclear reactor number 4 at Chernobyl, USSR, exploded and released a large amount of radioactive material into the atmosphere. [A. Hellemans and B. Bunch. The Timetables of Science, p. 597].

BIRTHS

1711 David Hume, (7 May[O.S. 26 April]1711,– 25 August 1776) was a Scottish philosopher, historian, economist, and essayist, known especially for his philosophical empiricism and skepticism. He was one of the most important figures in the history of Western philosophy and the Scottish Enlightenment. Hume is often grouped with John Locke, George Berkeley, and a handful of others as a British Empiricist *Wik



1832 Robert Tucker (26 April 1832 in Walworth, Surrey, England - 29 Jan 1905 in Worthing, England) A major mathematical contribution made by Tucker was his work as editor of William Kingdon Clifford's papers. Fifty-seven of Clifford's papers were collected and edited by Tucker and published in 1882 as Mathematical Papers. Tucker also wrote many biographies including those of Gauss, Sylvester, Chasles, Spottiswoode, and Hirst, all of which appeared in Nature. But, like a number of schoolmaster's at this time, he also made a contribution to research in geometry. He wrote over 40 research papers which were published in leading journals. These papers, although sometimes not of the highest quality, do contain a number of interesting ideas. Hill specially singles out for special mention his work on the Triplicate-Ratio Circle, the group of circles sometimes known as Tucker Circles, and the Harmonic Quadrilateral. *SAU





1874 Edward Vermilye Huntington (April 26 1874, Clinton, New York, USA – November 25, 1952, Cambridge, Massachusetts, USA) . This enthusiastic and innovative teacher was professor of mechanics at Harvard from 1919 to 1941. He made many contributions to the logical foundations of mathematics. His book, The Continuum (1917), was the standard introduction to set theory for many years. In 1928 he recommended the “method of equal proportion” for the apportionment of representatives to Congress; in 1941 this method was adopted by Congress. *VFR (now often called the Huntington-Hill method)



1879 Sir Owen Willans Richardson (26 Apr 1879; 15 Feb 1959 at age 79) English physicist who was awarded the Nobel Prize for Physics in 1928 for “his work on the thermionic phenomenon [electron emission by hot metals] and especially for the discovery of the law named after him.”This effect is why a heated filament in a vacuum tube releases a current of electrons to travel an anode, which was essential for the development of such applications as radio amplifiers or a TV cathode ray tube. Richardson's law mathematically relates how the electron emission increases as the absolute temperature of the metal surface is raised. He also conducted research on photoelectric effects, the gyromagnetic effect, the emission of electrons by chemical reactions, soft X-rays, and the spectrum of hydrogen.*TIS



1889 Ludwig Josef Johann Wittgenstein (26 April 1889 – 29 April 1951) was an Austrian-British philosopher who worked primarily in logic, the philosophy of mathematics, the philosophy of mind, and the philosophy of language.*Wik This noted philosopher introduced the word “tautology” in his Tractatus Logico Philosophicus of 1921. *VFR





1900 Charles Richter(April 26, 1900, Hamilton, Ohio - September 30, 1985, Pasadena, California ) This American seismologist developed the earthquake magnitude scale which bears his name. *VFR The scale is logarithmic (base ten). When an earthquake occurs, the maximum amplitude of the shake is measured on a seismometer and assigned a Richter number. A quake with a value of 5 on the Richter scale is 10 times more powerful than a quake with a value of 4. The choice of a log scale seems to have come from his associate, Beno Gutenberg,




1922 Asger Hartvig Aaboe (April 26, 1922 – January 19, 2007) was a historian of the exact sciences and mathematician who is known for his contributions to the history of ancient Babylonian astronomy. He studied mathematics and astronomy at the University of Copenhagen, and in 1957 obtained a PhD in the History of Science from Brown University, where he studied under Otto Neugebauer, writing a dissertation "On Babylonian Planetary Theories". In 1961 he joined the Department of the History of Science and Medicine at Yale University, serving as chair from 1968 to 1971, and continuing an active career there until retiring in 1992. In his studies of Babylonian astronomy, he went beyond analyses in terms of modern mathematics to seek to understand how the Babylonians conceived their computational schemes.*Wik



1933 Arno Allan Penzias (26 Apr 1933, ) is a German-American astrophysicist who shared one-half of the 1978 Nobel Prize for Physics with Robert Woodrow Wilson for their discovery of a faint electromagnetic radiation throughout the universe. Their detection of this radiation lent strong support to the big-bang model of cosmic evolution. (The other half of the prize was awarded to Pyotr Kapitsa for unrelated research.)*TIS


1938 Manuel Blum (26 April 1938; Caracas, Venezuela -) is a computer scientist who received the Turing Award in 1995 "In recognition of his contributions to the foundations of computational complexity theory and its application to cryptography and program checking".
Blum attended MIT, where he received his bachelor's degree and his master's degree in EECS in 1959 and 1961 respectively, and his Ph.D. in Mathematics in 1964 under professor Marvin Minsky.
He worked as a professor of computer science at the University of California, Berkeley until 1999. In 2002 he was elected to the United States National Academy of Sciences.
He is currently the Bruce Nelson Professor of Computer Science at Carnegie Mellon University, where his wife, Lenore Blum, and son, Avrim Blum, are also professors of Computer Science. *Wik





DEATHS

1600 Cunradus Dasypodius ((c. 1530–1532 – April 26, 1600) whose fame is based on the “construction of an ingeneous and accurate astronomical clock in the cathedral of Strasbourg, installed between 1571 and 1574.” *VFR The Strasbourg astronomical clock is located in the Cathédrale Notre-Dame of Strasbourg, Alsace, France. The current, third clock dates from 1843. Its main features, besides the automata, are a perpetual calendar (including a computus), an orrery (planetary dial), a display of the real position of the Sun and the Moon, and solar and lunar eclipses. The main attraction is the procession of the life-size figures of Christ and the Apostles which occurs every day at 12:30pm,(not sure if I read this right, but that seems to be when the clock reads noon (corrections anyone?))*Wik
[A minor point on language, the "orrery" was proabably not so-named in that period, according to a post at the Univ of Penn Library, "The name Orrery comes from the following train of facts. When George Graham, the celebrated London mechanic and watchmaker, employed one Rowley to construct his planetarium, said Rowley retained a model, and was afterward patronized by Charles Boyle, Earl of Orrery, in making a large machine which, though only representing one or two of the heavenly bodies, was sold to George the First for a thousand guineas. Sir Richard Steele in the work entitled "A New and General Biographical Dictionary", published in 1761, attributed this invention to the Earl of Orrery. Hence compilers of the British Encyclopaedia, which was republished in Philadelphia, followed his lead and such machines have since been known as Orreries. ]

1815 Carsten Niebuhr (March 17, 1733 Lüdingworth – April 26, 1815 Meldorf, Dithmarschen), German mathematician, cartographer, and explorer in the service of Denmark. Niebuhr's first book, Beschreibung von Arabien, was published in Copenhagen in 1772, the Danish government providing subsidies for the engraving and printing of its numerous illustrations. This was followed in 1774 and 1778 by the two volumes of Niebuhr's Reisebeschreibung von Arabien und anderen umliegenden Ländern. These works (particularly the one published in 1778), and most specifically the accurate copies of the cuneiform inscriptions found at Persepolis, were to prove to be extremely important to the decipherment of cuneiform writing. Before Niebuhr's publication, cuneiform inscriptions were often thought to be merely decorations and embellishments, and no accurate decipherments or translations had been made up to that point. Niebuhr demonstrated that the three trilingual inscriptions found at Persepolis were in fact three distinct forms of cuneiform writing (which he termed Class I, Class II, and Class III) to be read from left to right. His accurate copies of the trilingual inscriptions gave Orientalists the key finally crack the cuneiform code, leading to the discovery of Old Persian, Akkadian, and Sumerian. *Wik



1876 Osip Ivanovich Somov (1 June 1815 in Otrada, Moscow gubernia (now oblast), Russia - 26 April 1876 in St Petersburg, Russia) Somov was the first in Russia to develop a geometrical approach to theoretical mechanics. He studied the rotation of a solid body about a point, studying examples arising from the work of Euler, Poinsot, Lagrange and Poisson. Other topics Somov studied included elliptic functions and their application to mechanics. *SAU



1902 Lazarus Immanuel Fuchs (5 May 1833 – 26 April 1902) was a German mathematician who contributed important research in the field of linear differential equations. He was born in Mosina (located in Grand Duchy of Poznań) and died in Berlin, Germany.
He is the eponym of Fuchsian groups and functions, and the Picard–Fuchs equation; Fuchsian differential equations are those with regular singularities. Fuchs is also known for Fuchs's theorem. *Wik



1920 Srinivasa Aaiyangar Ramanujan died at age 32. This self educated mathematician, who was discovered by G. H. Hardy of Cambridge, is remembered for his notebooks crammed with complicated identities. *VFR
Although self-taught, he was one of India's greatest mathematical geniuses. He worked on elliptic functions, continued fractions, and infinite series. His remarkable familiarity with numbers, was shown by the following incident. While Ramanujan was in hospital in England, his Cambridge professor, G. H. Hardy, visited and remarked that he had taken taxi number 1729, a singularly unexceptional number. Ramanujan immediately responded that this number was actually quite remarkable: it is the smallest integer that can be represented in two ways by the sum of two cubes: 1729=13+123=93+103 *TIS
I later learned from a blog at John D. Cooks The Endeavour blog that there is a little more to the story. Here is how John writes it:
This story has become famous, but the rest of the conversation isn’t as well known. Hardy followed up by asking Ramanujan what the corresponding number would be for 4th powers. Ramanujan replied that he did not know, but that such a number must be very large.

Hardy tells this story in his 1937 paper “The Indian Mathematician Ramanujan.” He gives a footnote saying that Euler discovered 635318657 = 158^4 + 59^4 = 134^4 + 133^4 and that this was the smallest number known to be the sum of two fourth powers in two ways. It seems odd now to think of such questions being unresolved. Today we’d ask Hardy “What do you mean 653518657 is the smallest known example? Why didn’t you write a little program to find out whether it really is the smallest?”
His readers seem to find that Euler was correct. No surprise there.




1946 Louis Bachelier,(March 11, 1870 – April 28, 1946);the French mathematician, is now recognized internationally as the father of financial mathematics,..Bachelier was ahead of his time and his work was not appreciated in his lifetime. In the light of the enormous importance of international derivative exchanges (where the pricing is determined by financial mathematics) the remarkable pioneering work of Bachelier can now be appreciated in its proper context and Bachelier can now be given his proper place. *SAU



1951 Arnold (Johannes Wilhelm) Sommerfeld (5 Dec 1868, 26 Apr 1951 at age 82) was a German physicist whose atomic model permitted the explanation of fine-structure spectral lines. His first work was on the theory of the gyroscope (with Klein), and then on wave spreading in wireless telegraphy. More significant was his major contribution to the development of quantum theory, generally, and in its application to spectral lines and the Bohr atomic model. He evolved also a theory of the electron in the metallic state valuable to the study of thermo-electricity.*TIS



1976 Carl Benjamin Boyer (November 3, 1906 – April 26, 1976) was a historian of sciences, and especially mathematics. David Foster Wallace called him the "Gibbon of math history". He wrote the books History of Analytic Geometry, The History of the Calculus and Its Conceptual Development, A History of Mathematics, and The Rainbow: From Myth to Mathematics. He served as book-review editor of Scripta Mathematica. *Wik
His History of analytic Geometry is excellent.




1980 Stanisław Gołąb (July 26, 1902 – April 30, 1980) was a Polish mathematician from Kraków, working in particular on the field of affine geometry.
In 1932, he proved that the perimeter of the unit disc can take any value in between 6 and 8, and that these extremal values are obtained if and only if the unit disc is an affine regular hexagon. *Wik



1988 Guillermo Haro Barraza ( 21 March 1913 – 26 April 1988)  was a Mexican astronomer who was working as a newspaper reporter, when he interviewed (1937) Luis Erro of Tonantzintla Observatory. By 1943, Haro’s increasing interest in astronomy was rewarded with a staff position there, despite no formal training. His name remains associated with Herbig-Haro objects, that he and George Herbig discovered independently. These seemed to be stars much younger than the rest of the stars in the sky, and had distinquishing anomalies in their spectra which remained unexplained for many years. Haro’s career of contributions marked the emergence of serious astronomy in Mexico, recognized when he was elected (1959) as the first foreign associate of the Royal Astronomical Society from a developing country. *TIS



2006 Yuval Ne'eman (14 May 1925, 26 Apr 2006 at age 80) Israeli theoretical physicist, who worked independently of Gell-Mann but almost simultaneously (1961) devised a method of grouping baryons in such a way that they fell into logical families. Now known as the Eightfold Way (after Buddha's Eightfold Path to Enlightenment and bliss), the scheme grouped mesons and baryons (e.g., protons and neutrons) into multiplets of 1, 8, 10, or 27 members on the basis of various properties. He had served as the head of his Israel's atomic energy commission, and founded the country's space program.*TIS





Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell




Thursday 25 April 2024

On This Day in Math - April 25

  



Pure mathematics is the world's best game.
It is more absorbing than chess,
more of a gamble than poker,
and lasts longer than Monopoly.
It's free.
It can be played anywhere -
Archimedes did it in a bathtub.
~Richard J. Trudeau, Dots and Lines



The 115th day of the year; 115 is the 26th "Lucky" number. Lucky numbers are produced by a sieve method created by Stan Ulam around 1955. The term was introduced in 1955 in a paper by Gardiner, Lazarus, Metropolis and Ulam. They suggest also calling its defining sieve, "the sieve of Josephus Flavius" because of its similarity with the counting-out game in the Josephus problem. They are interesting explorations for both elementary and advanced students. Whether there are an infinite number of primes in the lucky numbers is still an open question.

115 (or 5! - 5) is the smallest composite number of the form p! - p, where p is prime.

\( \pi (115) = 30 \) occurs at the 115th decimal digit of pi. It is the smallest integer n, in which the number of primes less than n occurs at the nth decimal place of pi. Once more for the HS students, there are 30 prime numbers less than 115, and the 115th &116th decimal digits of pi are 3, 0, so the two digit value beginning at the 115th decimal place counts the number of primes less than 115. There is no smaller number for which this is true. You may want to find the next one.


EVENTS

1611 Galileo (1564 1642) visited Rome at the height of his fame in 1611 and was made the sixth member of the Accademia dei Lincei (Lynx Society) at a banquet on (14 Apr/25Apr). The word 'telescopium' was first applied to his instrument at this dinner. He showed sunspots to several people. The term “telescope” was introduced by Prince Federico Cesi at a banquet given in Galileo’s honor. It derives from the Greek “tele” meaning “far away” and “skop´eo” meaning “to look intently.” For a change, a term which derives from the Greek was actually coined by a Greek, namely Ioannes Demisiani. [Willy Ley, Watchers of the Skies, p. 112]*VFR Thony Christie at the Renaissance Mathematicus blog has an enjoyable review of the telescope and how it got its name.

Founded in the Papal States in 1603 by Federico Cesi, the academy was named after the lynx, an animal whose sharp vision symbolizes the observational prowess that science requires. Galileo Galilei was the intellectual centre of the academy and adopted "Galileo Galilei Linceo" as his signature. "The Lincei did not long survive the death in 1630 of Cesi, its founder and patron", and "disappeared in 1651".

During the nineteenth century, it was revived, first in the Vatican and later in the nation of Italy. Thus the Pontifical Academy of Science, founded in 1847, claims this heritage as the Accademia Pontificia dei Nuovi Lincei ("Pontifical Academy of the New Lynxes"), descending from the first two incarnations of the Academy. Similarly, a lynx-eyed academy of the 1870s became the national academy of Italy, encompassing both literature and science among its concerns.




1661 Two days after attending the Coronation of Charles II, John Evelyn attends another spectacular, "to the Society where were many diverse experiments in Mr. Boyle's Pneumatic Engine." *Lisa Jardine, Ingenious Pursuits, pg 54


1832 In a debate over the apportionment of the House, Senator Dickerson of New Jersey invoked the language of Berkeley’s Analyst when he railed against using Jefferson’s apportionment method wherein fractions are ignored: “These quasi-representatives, these infinitesimal, evanescent Representatives, these ideal Representatives, these ghosts of Representatives, after being counted in order to give the favored States their full proportion of a House of 250, are dismissed the service.” *VFR (for my students.) Bishop Berkeley wrote a paper called "The Analyst" in which he tried to refute Newton's use of fluxions (derivatives). The idea that we treat "h" as not zero to cancel in the difference quotient, then dismiss it in the final limit disturbed him (and lots of others).. He wrote, "And what are these fluxions? The velocities of evanescent increments? They are neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them ghosts of departed quantities?"

Bishop George Berkeley




1810 Exactly a week after he was elected a member of the Berlin Academy of Sciences, Wilhelm von Humboldt sends Gauss an offer of 1500 Thalers a year to serve as ordentliches Mitglied of the Academy with the assurance that, "...you are only requested to lend your name as a full professor to the new university, and, as much as your leisure and health allow, to teach a course from time to time." *Dunnington, Gray & Dohse; Carl Friedrich Gauss: Titan of Science  For US readers, the word Thalers is the origin of the name of US currency, a truncation of the origin,  Joachimstaler, of the silver in Spanish Silver coins which were commonly used for currency in the English colonies.  

Humboldt was a German philosopher, linguist, government functionary, diplomat, and founder of the Humboldt University of Berlin, which was named after him in 1949 (and also after his younger brother, Alexander von Humboldt, a naturalist).

Statue of Wilhelm von Humboldt outside Humboldt University, Unter den Linden, Berlin




1828 Christopher Hansteen, Director of the Observatory in Christiana, set out from Berlin to confirm his belief that the earth had more than one magnetic axis. 


1834 William Whewell In a single letter to Faraday on 25 April, 1834;  invented the terms cathode, anode and ion. The letter is/was on display at the Wren Library at Trinity College, Cambridge, UK. He is known for creating scientific words. He founded mathematical crystallography and developed Mohr's classification of minerals. He created the words scientist and physicist by analogy with the word artist. They eventually replaced the older term natural philosopher. (actually the use of scientist was a very slow process often not well received. see more of the interesting story here) Other useful words were coined to help his friends: biometry for Lubbock; Eocine, Miocene and Pliocene for Lyell; and for Faraday, anode, cathode, diamagnetic, paramagnetic, and ion (whence the sundry other particle names ending -ion).

"I have considered the two terms you want to substitute for eisode and exode , and upon the whole I am disposed to recommend instead of them anode and cathode ; these words may signify eastern and western way, just as well as the longer compounds which you mention, which derive their meaning from words implying rising and setting, notions which anode and cathode imply more simply. But I will add that as your object appears to me to be to indicate opposition of direction without assuming any hypothesis which may hereafter turn out to be false, up and down, which must be arbitrary consequences of position on any hypothesis, seem to be free from inconvenience, even in their simplest sense. I may mention too that anodos and cathodos are good genuine Greek words, and not compounds coined for the purpose. "





In 1882, a perpetual motion machine was patented by John Sutliff in the U.S. (No. 257,103). *TIS (Wouldn't you love to be the guy that approved that one.)

And if you think this is just because they didn't really know much in 1882, 77 years later, ...Yep, they did it again in 1959 (Sputnik is in the sky, the space race is on, and if you think patent examiners didn't know anything still, remember that Einstein had been a patent examiner between these two events..  
Dean's Sky hook of 1959 was approved on May 19.  



1943  On this day in 2038, Easter Sunday will occur at its latest possible date. The last time Easter was on April 25 was in 1943.

In 1953, Francis Crick and James Watson reached their conclusion about the double helix structure of the DNA molecule. They made their first announcement on Feb 28, and their paper, A Structure for Deoxyribose Nucleic Acid, was published in the 25 Apr 1953 issue of journal Nature. *TIS
Greg Ross at Futility Closet posted a note Crick created to respond to the deluge of requests the discovery created:
Deluged with mail after his discovery of the double helix, Francis Crick began sending a printed card in response to invitations:
crick demurral

1961 Noyce patent issued for the semiconductor. *VFR ( Noyce filed for the patent on "Semiconductor Device-and-Lead Structure" on July 30, 1959.
 ---nicknamed "the Mayor of Silicon Valley", co-founded Fairchild Semiconductor in 1957 and Intel in 1968. He is also credited (along with Jack Kilby) with the invention of the integrated circuit or microchip. While Kilby's invention was six months earlier, neither man rejected the title of co-inventor. Noyce was also a mentor and father-figure to an entire generation of entrepreneurs, including Steve Jobs at Apple, Inc
*Wik





1990 The Hubble Space Telescope is released from the payload bay of Discovery *David Dickinson ‏ @Astroguyz
 It would be almost another month (5/20/90) before the first image ("first light")  shows the 50% sharper images than Earth based images. 



2038 The next time that Easter will occur on April 25, the latest possible date. The last time Easter was on April 25 was in 1943.


BIRTHS

1769 Sir Marc Isambard Brunel French-born English engineer and inventor who solved the historic problem of underwater tunneling. A prolific inventor, Brunel designed machines for sawing and bending timber, boot making, stocking knitting, and printing. As a civil engineer, his designs included the Île de Bourbon suspension bridge and the first floating landing piers at Liverpool. In 1818, however, Brunel patented the tunneling shield, a device that made possible tunneling safely through waterbearing strata. On 2 Mar 1825 operations began for building a tunnel under the Thames River between Rotherhithe and Wapping. The Thames Tunnel was eventually opened on 25 Mar 1843. It has a twin horseshoe cross-section with height of 23-ft (7m), width of 37-ft (11m), and total length 1,506-ft (406m) *Wik





1836   Laroy S. Starrett (25 Apr, 1836-23 Apr 1922) was an American inventor and manufacturer who held over 100 patents, many for fine measurement tools, including the micrometer screw guage (patented 29 Jul 1890) that is familiar to present-day machinists and physics lab workers. His first patent (23 May 1865) was for a meat chopper, which he had manufactured for him, but marketed it himself. This product was successful, and his next patents for shoe studs and hooks provided enough income to establish his own factory. He began making a combination square. This was a try-square with a head that could be moved and clamped at any position along the blade, which he patented 26 Feb 1879. He added products including rules, surface guages, and other small tools. His business became the world's largest in his specialty. When he died, it had over five acres of production space, and 1,000 workers. *TIS  The company is still making quality instruments today.  I've owned a few fine Starrett micrometers and other gauging equipment in my days.





1849 Christian Felix Klein (25 April 1849 – 22 June 1925) was a German mathematician, known for his work in group theory, complex analysis, non-Euclidean geometry, and on the connections between geometry and group theory. His 1872 Erlangen Program, classifying geometries by their underlying symmetry groups, was a hugely influential synthesis of much of the mathematics of the day.*Wik He recommended the teaching of calculus in the German secondary schools. *VFR
[In mathematics, the Klein bottle is a non-orientable surface, informally, a surface (a two-dimensional manifold) in which notions of left and right cannot be consistently defined. Other related non-orientable objects include the Möbius strip and the real projective plane. Whereas a Möbius strip is a surface with boundary, a Klein bottle has no boundary. (For comparison, a sphere is an orientable surface with no boundary.) The Klein bottle was first described in 1882 by the German mathematician Felix Klein. It is sometimes claimed that it was originally named the Kleinsche Fläche "Klein surface" and that this was incorrectly interpreted as Kleinsche Flasche "Klein bottle," which ultimately led to the adoption of this term in the German language as well.*Wik




1874 Guglielmo Marconi Italian inventor, born in Bologna. He was a physicist, who invented the wireless telegraph in 1935 known today as radio. Nobel laureate (1909). In 1894, Marconi began experimenting on the "Hertzian Waves" (the radio waves Hertz first produced in his laboratory a few years earlier). Lacking support from the Italian Ministry of Posts and Telegraphs, Marconi turned to the British Post Office. Encouraging demonstrations in London and on Salisbury Plain followed. Marconi obtained the world's first patent for a system of wireless telegraphy, in 1897, and opened the world's first radio factory at Chelmsford, England in 1898. In 1900 he took out his famous patent No. 7777 for "tuned or syntonic telegraphy." *TIS




1882, the photophone was demonstrated by Alexander Graham Bell and Charles Sumner Tainter. In their device, a mirrored silver disc was made to vibrate by speech from a speaking tube. Light reflected off the disc was focused by a parabolic dish onto a selenium photocell. The variations in the reflected light were converted into electrical signals carried to headphones.
 It was invented jointly by Alexander Graham Bell and his assistant Charles Sumner Tainter on February 19, 1880, at Bell's laboratory at 1325 L Street in Washington, D.C. Both were later to become full associates in the Volta Laboratory Association, created and financed by Bell.
While honeymooning in Europe with his bride Mabel Hubbard, Bell likely read of the newly discovered property of selenium having a variable resistance when acted upon by light, in a paper by Robert Sabine as published in Nature on 25 April 1878. In his experiments, Sabine used a meter to see the effects of light acting on selenium connected in a circuit to a battery. However Bell reasoned that by adding a telephone receiver to the same circuit he would be able to hear what Sabine could only see.

A photophone receiver and headset, one half of Bell and Tainter's optical telecommunication system of 1880







1898 Pavel Sergeevich Aleksandrov  (7 May 1896 – 16 November 1982) was a Soviet mathematician who made important contributions to the field of topology (the study of related physical or abstract elements that remain unchanged under certain distortions) and one of the founders of the theory of compact and bicompact spaces. Aleksandrov introduced many of the basic concepts of topology, such as the notion that an arbitrarily general topological space can be approximated to an arbitrary degree of accuracy by simple geometric figures such as polyhedrons. Giving support to international cooperation, he supervised the publication of an English-Russian dictionary of mathematical terminology (1962).*TIS



1879 Edwin Bidwell Wilson (April 25, 1879 – December 28, 1964)  was an American mathematician, statistician, physicist and general polymath. As a student and protege, of Willard Gibbs at Yale he codified the physicist’s lectures on vector analysis into a textbook (1901) that profoundly influenced the use and notation of the subject. In 1912 he published a comprehensive text on advanced calculus that was the first really modern book of its kind in the U.S. *VFR 
Wilson had a distinguished academic career at Yale and MIT, followed by a long and distinguished period of service as a civilian employee of the US Navy in the Office of Naval Research. In his latter role, he was awarded the Distinguished Civilian Service Award, the highest honorary award available to a civilian employee of the US Navy. Wilson made broad contributions to mathematics, statistics and aeronautics, and is well-known for producing a number of widely used textbooks. He is perhaps best known for his derivation of the eponymously named Wilson score interval, which is a confidence interval used widely in statistics.




1900 Wolfgang Pauli, Austrian-born American winner of the Nobel Prize for Physics in 1945 for his discovery in 1925 of the Pauli exclusion principle, which states that in an atom no two electrons can occupy the same quantum state simultaneously. This principle clearly relates the quantum theory to the observed properties of atoms. Pauli was known for having an acid tongue. He was once challenged by another arrogant physicist, Lev Davidovich Landau who had explained his ideas to Pauli, whom he knew was skeptical of his ideas. Landau asked, "Well now do you think my ideas are nonsense?". Pauli's reply was, "No, not at all.; Your ideas are so confused I can't tell if they are nonsense, or not."





1903  Andrey Nikolayevich Kolmogorov  ( 25 April 1903 – 20 October 1987)  mathematician whose basic postulates for probability theory that have continued to be an integral part of analysis. This work had diverse applications such as his study of the motion of planets (1954), or the turbulent air flow from a jet engine (1941). In topology, he investigated cohomology groups. He made a major contribution to answering the probability part of Hilbert's Sixth Problem, and completely resolved (1957) Hilbert's Thirteenth Problem. Kolmogorov was active in a project to provide special education for gifted children, not only by writing textbooks and in teaching them, but in expanding their interests to be not necessarily in mathematics, but with literature, music, and healthy activity such as on hikes and expeditions. *TIS
The theory of probability as mathematical discipline can and should be developed from axioms in exactly the same way as Geometry and Algebra."
*Foundations of the Theory of Probability
A nice article about him as at the Nautilus (issue 004)




1918 Gerard Henri de Vaucouleurs (25 Apr 1918; 7 Oct 1995 at age 77) French-born U.S. astronomer whose pioneering studies of distant galaxies contributed to knowledge of the age and large-scale structure of the universe. He produced three Reference Catalogues of bright galaxies (1964, 1976, 1991). Each was a homogenization of data from widely different sources, so that the catalogues would not be merely finding lists or data collection lists, but astrophysically useful databases. Using data in the Reference Catalogues, he was able to develop new distance indicators and refine others. His unique philosophy on distance matters was "spreading the risks," that is, applying as many different and independent techniques as possible to check for scale and zero-point errors. *TIS



1935 Phillip James Edwin Peebles CC OM FRS (born April 25, 1935) is a Canadian-American astrophysicist, astronomer, and theoretical cosmologist who is currently the Albert Einstein Professor in Science, emeritus, at Princeton University. He is widely regarded as one of the world's leading theoretical cosmologists in the period since 1970, with major theoretical contributions to primordial nucleosynthesis, dark matter, the cosmic microwave background, and structure formation.

Peebles was awarded half of the Nobel Prize in Physics in 2019 for his theoretical discoveries in physical cosmology. He shared the prize with Michel Mayor and Didier Queloz for their discovery of an exoplanet orbiting a sun-like star. While much of his work relates to the development of the universe from its first few seconds, he is more skeptical about what we can know about the very beginning, and stated, "It's very unfortunate that one thinks of the beginning whereas in fact, we have no good theory of such a thing as the beginning."

Peebles has described himself as a convinced agnostic.






DEATHS


1472 Leon Battista Alberti (Feb. 14, 1404 Genoa April 25, 1472 also given as April 20) Artist and geometrist. As an artist, he "wrote the book," the first general treatise Della Pictura (1434) on the the laws of perspective, establishing the scienceof projective geometry. Alberti also worked on maps (again involving his skill at geometrical mappings) and he collaborated with Toscanelli who supplied Columbus with the maps for his first voyage. He also wrote the first book on cryptography which contains the first example of a frequency table.*TIS
"When I investigate and when I discover that the forces of the heavens and the planets are within ourselves, then truly I seem to be living among the gods. "


1744 Anders Celsius (27 November 1701 – 25 April 1744) Swedish astronomer, physicist and mathematician who is famous for the temperature scale he developed. Celsius was born in Uppsala where he succeeded his father as professor of astronomy in 1730. It was there also that he built Sweden's first observatory in 1741. He and his assistant Olof Hiortner discovered that aurora borealis influence compass needles. Celsius' fixed scale (often called centigrade scale) for measuring temperature defines zero degrees as the temperature at which water freezes, and 100 degrees as the temperature at which water boils. This scale, an inverted form of Celsius' original design, was adopted as the standard and is still used in almost all scientific work. *TIS
There is a Plaque to Anders Celsius in the church at Gamla Uppsala



1840 Siméon-Denis Poisson ( 21 June 1781 – 25 April 1840) French mathematician known for his work on definite integrals, advances in Fourier series, electromagnetic theory, and probability. The Poisson distribution (1837) describes the probability that a random event will occur in a time or space interval under the conditions that the probability of the event occurring is very small, but the number of trials is very large so that the event actually occurs a few times. His works included applications to electricity and magnetism, and astronomy. He is also known for the Poisson's integral, Poisson's equation in potential theory, Poisson brackets in differential equations, Poisson's ratio in elasticity, and Poisson's constant in electricity.





1999 Sir William Hunter McCrea (13 Dec 1904, 25 Apr 1999 at age 94)
was an Irish theoretical astrophysicist whose early work was in quantum physics, relativity and pure mathmatics, but he gradually turned to applying theoretical physics in astronomy. He ranged from considering the stellar atmospheres, planet formation, cosmology and indeed, the formation of stars and the universe. He was an early advocate that stars have a high hydrogen content. He studied gas dynamics, as in the formation of hydrogen in molecular form in dusty interstellar clouds, and developed a theory of the transition from increasing density to conditions sufficient for gravitational collapse and possible star formation. Although he at first was open-minded to the steady state theory of the universe proposed by Hermann Bondi, Thomas Gold and Fred Hoyle, McCrea's work and others accumulated evidence for the Big Bang theory.*TIS
"Our experience shows that not everything that is observable and measurable is predictable, no matter how complete our past observations may have been. "






Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell